

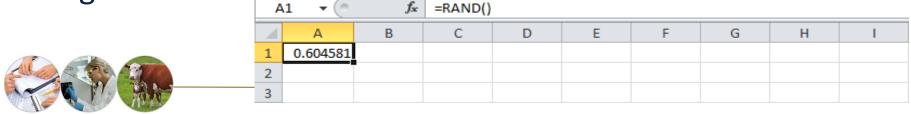
Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Economic Affairs SECO

Sample size exercise

Marco De Nardi

SAFOSO, Switzerland



Generation of random numbers in Excel

 Excel has two useful functions when it comes to generating random numbers. The RAND and RANDBETWEEN function.

- Rand
- The RAND function generates a random decimal number between 0 and 1.
- 1. Select cell A1.

• 2. Type RAND() and press Enter. The RAND function takes no arguments.

Generation of random numbers in Excel

- Randbetween
- The RANDBETWEEN function generates a random whole number between two boundaries.
- 1. Select cell A1.
- 2. Type RANDBETWEEN(50,75) and press Enter

Α	1 •	f _x	=RANDB	=RANDBETWEEN(50,75)						
	Α	В	С	D	Е	F	G	Н	I	
1	57									
2										
3										

Simple Random Sample (example)

- Aim: estimate prevalence of Bovine Brucellosis in a herd of 690 animals.
- Each animal has an eartag with an unique number (from 1 to 690)

• Sample size: 100 animals

	\sim
	, n -
	•
To	To Do

- 1) Create a database with all 690 eartags
- 2) Generate a random number for each animal
- 3) You sample the 100 cattle with the smallest or largest random numbers

ID (eartag)	Random N.
56	1
255	2
145	3
458	3
195	4
690	5
61	6
226	6
253	9
461	10
284	14
291	16
613	16
609	17
156	18
344	18
394	18
15	20
125	20
278	20
87	21
246	21
464	21
505	22
590	22
188	26
432	26

Calculation of sample size- sample size table

	Required Sample Size								
	Confid	ence = 9	95%		Confidence = 99%				
Population Size	5.0%	Margin 3.5%	of error 2.5%	1.0%	5.0%	Margin 3.5%	of Error 2.5%	1.0%	
10 20 30 50 75	10 19 28 44 63	10 20 29 47 69	10 20 29 48 72	10 20 30 50 74	10 19 29 47 67	10 20 29 48 71	10 20 30 49 73	10 20 30 50 75	
100 150 200 250 300	80 108 132 152 169	89 126 160 190 217	94 137 177 215 251	99 148 196 244 291	87 122 154 182 207	93 135 174 211 246	96 142 186 229 270	99 149 198 246 295	
400 500 600 700 800	146 217 234 248 260	265 306 340 370 396	318 377 432 481 526	384 475 565 653 739	250 285 315 341 363	309 365 416 462 503	348 421 490 554 615	391 485 579 672 763	
1,000 1,200 1,500 2,000 2,500	278 291 306 322 333	440 474 515 563 597	606 674 759 869 952	906 1,067 1,297 1,655 1,984	399 427 460 498 524	575 636 712 808 879	727 827 959 1,141 1,288	943 1,119 1,376 1,785 2,173	
3,500 5,000 7,500 10,000 25,000	346 357 365 370 378	641 678 710 727 760	1,068 1,176 1,275 1,332 1,448	2,565 3,288 4,211 4,899 6,939	558 586 610 622 646	977 1,066 1,147 1,193 1,285	1,510 1,734 1,960 2,098 2,399	2,890 3,842 5,165 6,239 9,972	
50,000 75,000 100,000 250,000 500,000	381 382 383 384 384	772 776 778 782 783	1,491 1,506 1,513 1,527 1,532	8,056 8,514 8,762 9,248 9,423	655 658 659 662 663	1,318 1,330 1,336 1,347 1,350	2,585 2,626	12,455 13,583 14,227 15,555 16,055	
1,000,000 2,500,000 10,000,000 100,000,000 300,000,000	384 384 384 384 384	783 783 784 784 784	1,534 1,536 1,536 1,537 1,537	9,512 9,567 9,594 9,603 9,603	663 663 663 663 663	1,352 1,353 1,354 1,354 1,354		16,584	

Pepulation							pected p					
size	50%	40%	30%	25%	20%	15%	10%	5%	2%	1%	0.5%	0.1%
10	4	5	6	7	8	10	10	10	10	10	10	10
20	4	6	7	9	10	12	16	19	20	20	20	20
30	4	6	8	9	11	14	19	26	30	30	30	30
40	5	6	8	10	12	15	21	31	40	40	40	40
50	5	6	8	10	12	16	22	35	48	50	50	50
60	5	6	8	10	12	16	23	38	55	60	60	60
70	5	6	8	10	13	17	24	40	62	70	70	70
80	5	б	8	10	13	17	24	42	68	79	80	80
90	5	6	8	10	13	17	25	43	73	87	90	90
100	5	6	9	10	13	17	25	45	78	96	100	100
12 0	5	6	9	10	13	18	26	47	86	111	120	120
140	5	6	9	11	13	18	26	48	92	124	139	140
160	5	6	9	11	13	18	27	49	97	136	157	160
180	5	6	9	11	13	18	27	50	101	146	174	180
200	5	6	9	ш	13	18	27	51	105	155	190	200
250	5	6	9	11	14	18	27	53	112	175	228	250
300	5	6	9	11	14	18	28	54	117	189	260	300
350	5	6	9	11	14	18	28	54	121	201	287	350
400	5	6	9	11	14	19	28	55	124	211	311	400
450	5	6	9	11	14	19	28	55	127	218	331	450
500	5	6	9	11	14	19	28	56	129	2:25	349	500
600	5	6	9	11	14	19	28	56	132	235	379	597
700	5	6	9	11	14	19	28	57	134	243	402	691
800	5	6	9	11	14	19	28	57	136	249	421	782
900	5	6	9	11	14	19	28	57	137	254	437	868
1000	5	6	9	11	14	19	29	57	138	258	450	950
1200	5	6	9	11	14	19	29	57	140	264	471	1102
1400	5	6	9	11	14	19	29	58	141	269	487	1236
1600	5	6	9	11	14	19	29	58	142	272	499	1354
1800	5	6	9	11	14	19	29	58	143	275	509	1459
2000	5	6	9	11	14	19	29	58	143	277	517	1553
3000	5	6	9	11	14	19	29	58	145	284	542	1895
4000	5	6	9	11	14	19	29	58	146	268	556	2108
5000	5	6	9	11	14	19	29	59	147	290	564	2253
6000	5	6.	9	11	14	19	29	59	147	291	569	2358
7000	5	6	9	11	14	19	29	59	147	292	573	2437
8000	5	6	é	11	14	19	29	59	147	293	576	2498
9000	5	6	9	11	14	19	29	59	148	294	579	2548
10000	5	6	ģ	11	14	19	29	59	148	294	581	2588
φ	5	6	é	11	14	19	29	59	149	299	598	2995

The approximate sample size required to estimate disease prevalence in large populations.

	Confidence level: 90%				95%		99%			
Expected prevalence	Tolerable error			Tolerable error			Tolerable error			
provarono	10%	5%	1%	10%	5%	1%	10%	5%	1%	
10%	24	97	2435	35	138	3457	60	239	5971	
20%	43	173	4329	61	246	6147	106	425	10616	
30%	57	227	5682	81	323	8067	139	557	13933	
40%	65	260	6494	92	369	9220	159	637	15923	
50%	68	271	6764	96	384	9604	166	663	16587	
60%	65	260	6494	92	369	9220	159	637	15923	
70%	57	227	5682	81	323	8067	139	557	13933	
80%	43	173	4329	61	246	6147	106	425	10616	
90%	24	97	2435	35	138	3457	60	239	5971	

http://epitools.ausvet.com.au/content .php?page=SampleSize

Epi Tools - Sample size calculations

These utilities can be used to calculate required sample sizes to estimate a population mean or proportion, to detect significant differences between two means or two proportions or to estimate a true herd-level prevalence.

ite Contents

Epidemiological studies

- - To estimate a single proportion To estimate a single mean
 - Two proportions
- Two means with equal sample size and equal variances
- Two means with unequal sample size and unequal variances
- To estimate true prevalence (at animal or herd-level)
- · Sample size for a cohort study
- Sample size for a case-control study

Sample size to demonstrate disease freedom

- Sample size assuming perfect test specificity
- Sample size for pooled sampling in a large population
- Sample size to achieve target confidence of freedom
- Design prevalence required to achieve target population sensitivity for given sample size
- FreeCalc sample size calculation for imperfect tests

2-stage sampling, assuming perfect test specificity:

- Least-cost sample sizes where cluster sizes are known (and select clusters for testing).
- Least-cost sample sizes where cluster sizes are NOT known.
- Sample sizes for specified cluster sensitivity.

[Home | About this site | Glossary | References | Links]

This site was created by AusVet Animal Health Services with funding from the Australian Biosecurity Cooperative Research Centre. It provides a range of epidemiological tools for the use of researchers and epidemiologists, particularly in animal health. Please send any comments, questions or suggestions to Evan Sergeant Copyright © 2016 AusVet Animal Health Services

Sample size to estimate a proportion with specified precision

Input Values

This utility calculates the sample size required to estimate a proportion (prevalence) with a specified level of confidence and precision.

Estimated true 0.5 proportion :

Confidence level: 0.95

Desired precision (+/-):

0.05

Population size (for 100000

finite populations)

Submit

Inputs are the assumed true value for the proportion, the desired level of confidence, the desired precision of the estimate and the size of the population for limited population sizes. The desired precision of the estimate (also sometimes called the allowable or acceptable error in the estimate) is half the width of the desired confidence interval. For example if you would like the confidence interval width to be about 0.1 (10%) you would enter a precision of +/- 0.05 (5%).

The program outputs the sample sizes required to estimate the true value with the desired precision and confidence, for both an infinite population and for a population of the specified size. If population size is left blank or zero, only the sample size for an infinite population is calculated.

Sample size is calculated using the formula:

 $n = (Z^2 \times P(1 - P))/e^2$

where Z = value from standard normal distribution corresponding to desired confidence level (Z=1.96 for 95% CI)

P is expected true proportion

e is desired precision (half desired CI width). For small populations n can be adjusted so that $n(adj) = \frac{(Nxn)}{(N+n)}$

Sample size to estimate a single proportion

Analysed: Thu Jun 30, 2016 @ 17:49

Inputs

Estimated Proportion	0.5
Confidence level	0.95
Desired precision of estimate	0.05
Population size	1e+05

Results

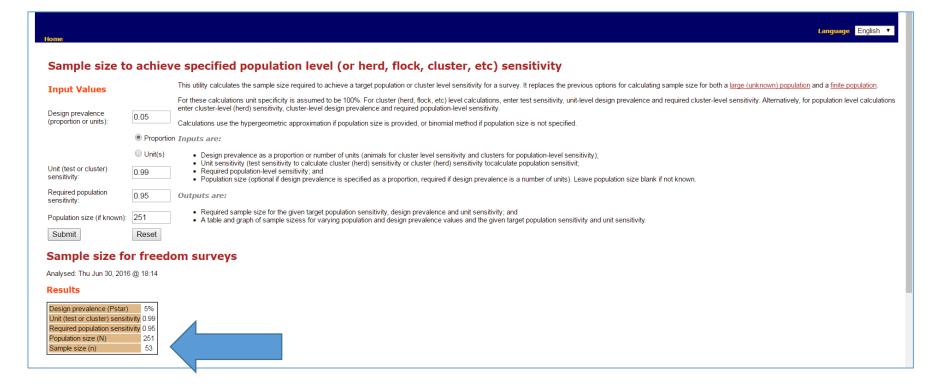
	Sample size
Infinite population	385
Population = 1e+05	384

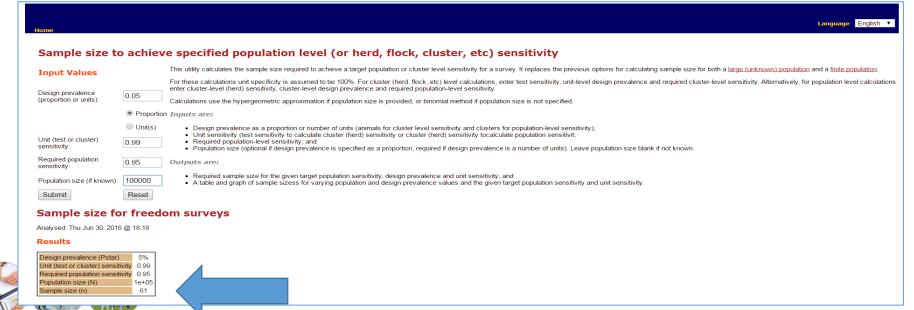
Al Active Surveillance in Poultry

Decision of the European
Commission of 13 April
2007 on the
implementation of
surveillance programmes
for Avian Influenza in
poultry and wild birds to
be carried out in the
Member States.

Sampling strategy

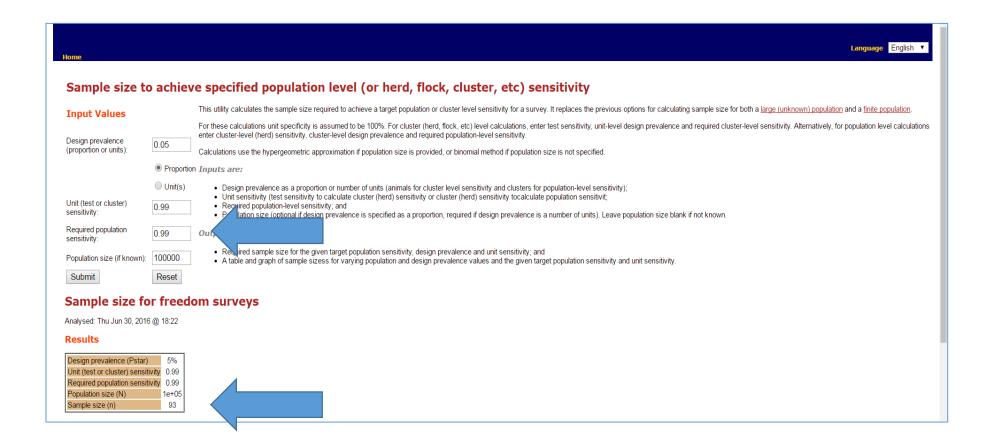
a) Sampling shall be stratified throughout the territory of the whole country, taking into account the number of holdings to be sampled;


that number shall be defined so as to ensure the identification of at least one infected holding if the prevalence of infected holdings is ≥ 5 % (95 % confidence interval- 99% for ducks, geese and turkeys);



What do we know?

- Aim: detect at least one infected holding
- Prevalence of infected holdings is ≥ 5 %
- 95 % confidence interval
- 99% for ducks, geese and turkeys
- Which formula would you use?
- To estimate prevalence? $n = 1.96^2 P(1-P)/d^2$
- To detect disease? $n = (1-(1-P)^{1}/d)((N-d/2)+1)$



Number of holdings to be sampled of each poultry category (except turkey, duck and goose holdings)

Number of holdings per poultry category per Member State	Number of holdings to be sampled
Up to 34	All
35-50	35
51-80	42
81-250	53
>250	60

99% for ducks, geese and turkeys

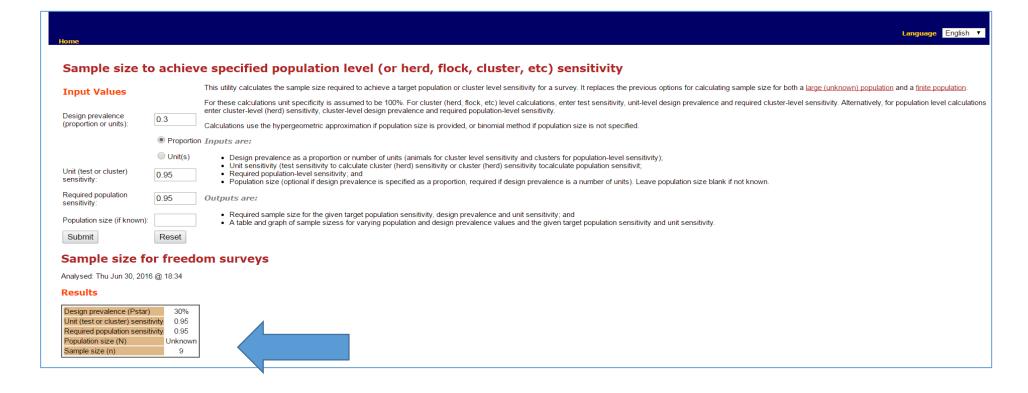
Number of turkey, duck and goose holdings to be sampled

Number of holdings per poultry category per Member State	Number of holdings to be sampled
Up to 46	All
47-60	47
61-100	59
101-350	80
>350	90

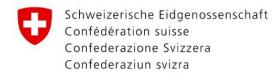
Sampling strategy

(b) the number of birds sampled from each holding shall be defined so as to ensure 95 % probability of identifying at least one positive bird if the prevalence of sero-positive birds is ≥ 30 %.

Blood samples for serological examination shall be collected from at least 5 to 10 birds per holding for each poultry category (except ducks geese and quail),


If more than one shed is present on a holding it is recommended to take at least 5 birds per shed.

What do we know?


- Aim: 95 % probability of identifying at least one positive bird
- Prevalence of infected holdings is ≥ 30 %.
- 95 % confidence interval

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Economic Affairs SECO

Thanks